
IT Project Management

Lecture 8:
Software Quality and Defect Management

Dr. Erwin Hoffmann

E-Mail: it-pm@fehcom.de

Fachhochschule Frankfurt am Main
Fachbereich 2: Informatik

SS 2008

Qualtiy Requirements for Software

• Software projects (as part of IT projects) result in a piece of code which can be
– directly installed executed on a particular Operating System (OS) platform (like Windows,

UNIX, MacOS) or can
– delivered in source code, requiring compilation and linking of the respective programs prior

of execution.
• Regarding quality, the software has to fulfil particular requirements:

– Usability: The software as to fulfil the defined tasks and the published use cases ('works as
designed').

– Conformance: The software has to comply to the published functional aspects ('works as
expected').

– Absence of bugs: The software should be reasonable bug-free ('works under all
circumstances').

– Security: The software should neither directly nor indirectly impact the security context of
the user ('works without security impact'), except where explicitly stated.

– Performance: If performance is not part of the Usability, the software should use as little
system resources as possible and achieve maximum performance ('works with little system
impact and high performance').

How to achieve Qualtity in Software

• Quality in software can be achieved
– by means of a qualified software design, which fits

to the respective tasks and considers the
requirements,

– with a well-suited OS and perhaps necessary
middleware,

– developing the software in a (quality) controlled
environment with supporting infrastructure, and

– by aid of a qualified defect tracking and
documentation system.

Software quality is independent of the programming
language itself, and hence whether the code is
actually executed via an interpreter (script, macro), as
byte-code (within a virtual machine), or directly as
binary (including OS loader statements).
Of course, the choice of the programming language
has a substantial impact on the performance (and
occasional on security too).

Development
time

Performance

Data &
Process
model

Resource
usage

ISO 9000 Software Quality Management

• The chain:
Design/Planning -> Coding/Development -> Control/Improvement

is typically limited by budget and time-to-market conditions.
– Shortages in any of those steps has a direct influx on the quality of the software

product
• The standard ISO 9000-1 questions software quality for 'Information

Systems" IS in chapter A.3:
– [Management attention] Is there any IT Manager for the IS accountable and

responsible to define requirements and to approve changes ?
– [Quality Management System] Are all requirements for the IS explicitly laid

down in documents ?
– [Audits] Are all requirements accompanied by a description how to verify it's

conformance ?

Quality Management Systems

• According to ISO 9000 high-
level management attention the
most important factor required
for quality management.

• The quality management
system QMS itself can be
viewed from an

– (a) descriptive and
– (b) from an operational

perspective.

Quality enabled
company

Company wide
QM system

Quality of
processes

Integrated Quality
management for

processes

Quality of
products

Quality
management in

projects

ISO 9000

depends on

determins

demands

defines

Quality Plan
Development Plan

Process Model
Quality Management

Associated ISO 9000 Standards

• The content of a QMS depends on the
production branch described in the
following ISO standards:

– ISO 9001: Standard for quality
management in design, development,
production, assembly, and customer
services.

– ISO 9002: Standard for quality
management for production and
assembly.

– ISO 9003: Standard for quality
management for final testing and control.

• For software development, ISO 9001 is
the required standard and demands
continuous process improvements

Defining
Goals

Goal
achieved?

Planning
Tasks

Assign
Resources

Realise
Tasks

Measure
Progress

Review
Plans Review

Codeing

Code
bug free?

Refine

Previous phase

Following phase

a) b)

ISO 10013 and QM Documents

• The standard ISO 10013 provides in addition a lay-out of a Quality
Management System (QMS) and emphasises the rôle of documentation in
order to achieve conformance with this standard

QM
Guideline

QM Docments + Templates

QM Procedures

Working Documents

Description of QM system
according the QM planning,
QM goals and conformance
with ISO 9000 ff.

Description of QM procedures
and responsibilities

Detail list of test cases and
how they shall be applied

Design documents, use
cases, letter of completion

Quality Management and Audits

• While setting up a QMS according to ISO 9001, in fact one has to include
QM elements from the ISO standards 9001, 9002, and 9003.

• Apart from assuring the quality management cycle for products, the
conformance of the existing QMS has to be verified by means of Audits
(ISO 9000-1).

• Audits are part of the ISO 9000 certification chain and may include:
– Content and conformance of the QMS handbook with the ISO standards.
– Operational conformance with the QMS handbook.
– Tests of the product quality.
– Capability of the project team to manage QM processes.

Use Cases

• In today's software development, the design phase of the product or any component
of the product includes a Use Case.

– The Use Case is a functional description of way, the product or the component is supposed
to work.

• The event of Object Oriented (OO) programming has produced a certain schematic
description of the components action flow, known as Unified Model Language UML
which can be considered of a standardized description.

– UML Use Case charts are the de-facto standard to represent dependencies.

Gather all
 sheets

Count correct
answers

Suffi-
cient ?

Not
passed !

Passed ! Determine
Grade

Publish
in Moddle

Send to
Secretary

Use case: Exam
IT Project Mgmt

Use Cases and Test Cases

• Another common method is to specify the Use Case in an Activity Table
while using a generic template

• Regarding software development each component, as described in terms of a
Work Unit (PMBoK), has to be accompanied by a Use Case.

– Thus, the Use Case is part of the software design/development.
• According to the Quality Plan (QP) the QA department has to create Test

Case suites.
– Here, the functional dependencies of the component are used to derive tests

whether the software component is in conformance with the Use Case or not.
– Any substantial tests have to prepared in term of Test Cases, which in turn

depend on the existence of qualified Use Cases.
– To derive the necessary Use and Test Cases becomes difficult and time-

consuming for complex software products.
As a result, complexity and quality of software products are believed to be opposing
attributes

Content of a Test Case

• Only in the case of a well-documented software component, it's quality can
be measured.

– A poorly documented software is almost impossible to gauge and effectively
leads to a frustrated user (and tester !), or a user who does use only parts of the
software's capability (while paid for the total).

• A Test Case should include the following tests (starting from the Use Case):
– Default behaviour: Provides the software component the expected results for

default settings and input variables ?
– Conditional behaviour: In case the component offers additional

'switches'/'options' and/or 'arguments'/'parameters', do they work as expected
(described) ?

– Extreme behaviour: How does the component recognise input values out of
specification and what are the results ?

Test Cases and Documentation

• The qualified Test Case would detail the expected results based on a functional
breakdown for the software component, while explicitly mentioning the conditions of
the individual tests.

– These dependencies very much underline the importance of qualified design and
development documentation.

– In particular, it is required to provide an exhaustive list of error and return codes for any
software component.

• Since any documentation is expansive, in particular for development documents two
approaches are common to ease this task for the developers:

– In line documentation within the code: In the software code itself, relevant sections are
documented with a specific mark-up language easy to parse and to collect.

The programming language PERL has pioneered this, known as "Plain Old Documentation"
POD.

– Documentation within the development framework: Some frameworks, like Eclipse, use
context-sensitive information retrieval by means of a plug-in.

Here, the current changes can be recognised and documented and in the same token saved (and
retrieved) in a version-dependent manner.

Defect Management

• What is a Defect ?
A defect is a deviation of a software component from the documented behaviour
and/or expected output.

• Attributes of a Defect:
– Source

The reason for a Defect could be:
A programming error; commonly known as Bug.
A programming context error; the anticipated (software) functionality works
differently as documented/expected.
A design error; the programmer realised the code accordingly to the design, but this
was inappropriate for the task.
A documentation error; the software component reacts differently with respect to the
documented behaviour.

Priorites of a Defect

– Priority
In our today's understanding, we use the following Priorities for the defect
fixing:

Undefined (-1): Showstopper; the defect needs to be fixed because it inhibits any
further testing or any potential use of the software component.
One (1): The software component is inadequate or any use.
Two (2): The software includes severe deficiencies and may lead to substantial
deviations from the expectations.
Three (3): The software shows deficiencies but they can be compensated (by work
around).
Four (4): Less-relevant errors have been accounted, which are not important for
general use.
Five (5): Errors have been accounted, but are not mainly due to insufficient
documentation.

Category and Ownership of a Defect

– Category
Any Defect is assigned to a component Category.
Occasionally, a software module may include several components:

User Interface (Input / Output)
Middleware, Transport Layer, Interfaces/APIs
Back-end (e.g. Database)

It is the responsibility of the software design to attach a certain component to
category, suitable for Defect tracking.

– Ownership
A defect is assigned for error-fixing to a particular Owner.
In turn, every software is developed and perhaps trigger by a certain
person/team/organisation/company.
Thus, there should be a relationship between Ownership of the defect and the
Authorship of the software component.
Typically, Revision Control Systems (RCS) and/or Integrated Development
Environment (IDE) will automatically insert Author information taken from the user
environment in terms of a header.

Versions, Project, State and Due-Date of Defects

– Version
Versionising the software component can be done explicitly by the developer or is
automatically added by the RCS/IDE.
Independent of the components version, it typically is developed for and available in
a certain Release which provides a numerical (or verbal) identification of the whole
project.

– Project
A major software component or a set of components is typically identified as Project.
Projects maybe subdivided in subprojects.
This depends on the WBS (in PMBoK terms) and can be freely chosen in any
software development project.

– State
The state describes the recognition of the defect (whether it is new, open or closed
etc.) and it's assignment state, as discussed in the defect life cycle.

– Due-Date
The expected date, when the defect shall be fixed (this depends on priority).

Defect tracking Systems

• For software development, essential part of the QM system is a bug-tracking
or Defect Management Software.

– One of the most-common systems is Bugzilla (public domain).
– Typically, any Defect Management system uses a database as back-end and a

graphical (ie. Web based) front-end.
• Logically, such a system allows us to define a Lifecycle for a defect.

– This Lifecycle can be forged to our own needs, or follows a standard procedure.
• Companies may want to use one common system for Defect Management

and as well for Incident and Problem Management, since the Lifecycle idea
is the same.

– Such Trouble Ticket Systems allow a Class definition for the occurred error to
be reported:

Defects - Software Development, Bug tracking
Incidents - Deviations for a defined process (erratically behaviour); (none-) recurring
Problems - Set of (inter-depending) incidents with (known) common source

Bugzilla's Defect and Fix States

Defect State Meaning
Unconfirmed The defect has been reported but has not been checked successfully
New The defect has been reported, but yet not assigned and/or verified
Assigned The defect has been assigned and forwarded to a responsible developer
Reopened The defect was handled and closed, but requires further investigation/treatments
Resolved The defect has be solved and the solution requires approval
Verified The defect is solved and the solution was verified
Closed The defect is solved and the solution is integrated

Fix State Meaning
Fixed A bug-fix has been applied
Invalid The defect was no due to a bug; further information is required
Wontfix The defect can't be solved under the current conditions (time, budget)
Later The fix for the defect is deferred (next release/version/update)
Remind No fix will be provided now, but considered for a forthcoming version
Duplicate The defect is a duplicate of another one
Worksforme The defect can not be reproduced in the developer's environment

Complex State Change Charts

N A O Q R L C V

I

U

D

T

E

X

X

Z

S

F P

Any Development Intgrt. Test

Approval/Mgmt.

A: accepted
O: Open
Q: Code Review
R: Resolved
L: Labled

N: new

I: irrelevant
U: unreprodable
D: Duplicate

X: done, no action
Y: done, not reproducable
Z: done, duplicate

V: done, verified
B: send back
E: erroneous state

S: resubmitted
F: forwarded (other project)
P: postponed

Defect Management by Quality Manager

• Quality Management or Quality Assignment Reports are generated regularly (for
instance every week) and includes essentially tow different reports:

– a statistical report, representing the defects per project/subproject in terms of priority
and component

– an individual report, focusing on the most important defects, while provide a short
description of its current state and forthcoming solution strategies and due-dates.

A statistical report is typically shown
in terms of 'lego charts' allowing a
quick understanding of the project's
defect distribution in terms of priority
and component.

• In order to allow a quality measure, the
following analysis shall be done:

– How many defects of priority X have
been fixed since last report ?

– How many new defects of priority X
have open since then ? Priority

Component

D
ef

ec
ts

-1
1 2

3 4 5

In
te

rfa
ce

 A

In
te

rfa
ce

 B

S
O

A
 C

om
po

ne
ntJa

va

U
I

0
1
2
3
4
5
6
7
8
9
10

Quality Reports

• One essential task of the Quality Manager is to gauge individual events and
bring them to attention.

• A Quality Report should consider the following Defect attributes:
– Showstopper: The defect impacts all other tests, since they depend on it's fix.
– Criticality: The defect inhibits the use of an important component and the

solution is critical for the whole project.
– Due-Date: The solution for this defect has be postponed too often and disturbs

other developments.
Together with the head of development, the Quality Manager will re-assess the
defects and either require an intensified consideration of the defect or perhaps re-
prioterise it.
The head of development will then re-assign and re-schedule developers to
potentially fix the defect.

Unknown Defects

• In case of qualified Quality Management system and under the assumption
that defects have been treated in a controlled manner, we already have the
following QA information:

– Distribution of the number of new defects in terms of priority and components.
– Distribution the number of fixed defects in dependency of priority and

component.
• What we don't currently have, is

– the number and distribution of unknown defects.
• It is most common for software development to allow within a 'release' a

number less severe defects.
– This in turn requires an estimate of the number of potentially remaining defects

which have to be added to the number of known bugs.

Completion of Software Coding
• The key for Defect Estimation is to use additionally development information:

– Phase 1: In the beginning of the software project, the established code base is small
and bugs (even prio 1) happen often.

– Phase 2: While the development team
becomes familiar with it's tools, the approach,
writing a set common utility programs or classes,
and gathering more and more experience,
development becomes streamlined and the
code base grows proportional in time and in
numbers of developers.
Watching this from the Quality Manager's
perspective, quality increases and defects
'come and go'.

– Phase 3: However, coming close to a scheduled
release, often development realises that completion
 is behind the original schedule.

Thus, missing (but promised) functionalities
have to be included in a rush.
The code basis will probably increase significantly.

Average Code
Completion
[%]

Time

<n>

<n>

Theory

Realityδ

Acceptable Defect Rate

• In order to control quality and to
consider the rapidly growing code base,
the Quality Manager has to correlate
the number of defects with the actual
checked in code.

• For any software development it
expected, that the number of defects
depends on the lines of code produced,
expressed as 'Defects/kLoc' (number of
defects per 1000 lines of code).

– Thus, even with most advanced QA
means a certain number of bugs is be
present and is acceptable.

– The Quality Management Plan (QMP)
will probably detail, what is the
amount of acceptable bugs and will
provide a threshold.

Defects
per kLoc

Time

expected
bug rate

scheduled
software
qualtity

10

1

Alpha
Tests

Beta
Tests

Scheduled
Release

5

2

0,5

logarithmic

Estimation of unknown Defects

• It is task of the Quality Manger to correlate the number of identified, fixed defects
per kLoc and show this distribution on the same time line.

• A qualified extrapolating (not necessarily linear) will yield a guess of the number
unidentified defects.

cummulated
defects
per kLoc

Time
Scheduled
Release

End of
Development

Initial
Driver Build

identified
bugs

fixed
bugs

known
redidual
bugs

estimated
unidentified
bugs

Developement and Testing Environments

• In order to support the software quality management cycle, as part of the QMP different
environments are usually used and referred to.

If common resources, including operating system, middleware (database), and other required
applications a dedicated and configured for a dedicated task, we can refer his as environment.

• Typically, the following environments are used and configured for larger software
developments:

– [DEV] Development environments: This includes in particular any required compiler and linker,
Integrated Development Frameworks, and Source Code Control Systems.
At least one specific development environment is required for Release Management.

– [UAT] User Acceptance Test environments: The (system) test environment's reflect closely, but on a
smaller scale the later production environment; specific tools for software tests and quality
management may be available. Here, the final quality approval will be carried out.

– [INT] Integration Test environments: In case third party systems need to be included, one particular
UAT can be used as Integration Test environment.

– [REF] Reference environments: This environment should be sized and configured comparable to the
production environment. Here, performance and regression tests can be performed. Occasionally, the
reference environments can be used as backup and fail-over systems for the production.

– [PROD] Production environments: Full sized production environment. Different from UAT,
additional hardening could have taken place. Their impact has to be figured out in the reference
environment.

